Archive

Posts Tagged ‘boto3’

Collect Cloudwatch metrics (including custom one) and upload to S3 bucket

Recently I wrote a script to pull the cloudwatch metrics (including the custom ones – Memory utilization) using CLI. Objective is to have have the data published to S3 and then using Athena/QuickSight, create a dashboard so as to have a consolidated view of all the servers across All the AWS accounts for CPU and Memory utilization.

This dashboard will help to take a right decision on resizing the instances thereby optimizing the overall cost.
Script is scheduled (using crontab) to run every one hour. There are 2 parts of the script
1. collect_cw_metrics.py – This is the main script
2. collect_cw_metrics.sh – This is a wrapper and internally calls python script.

How the script is called :

/path/collect_cw_metrics.sh <Destination_AWS_Account ID> <S3_Bucket_AWS_Account_ID> [<AWS_Region>]

Wrapper script – collect_cw_metrics.sh

#!/bin/sh
if [[ $# -lt 2 ]]; then
  echo "Usage: ${0} <AccountID> <S3_Bucket_AccountID>"
  exit 1
fi
NOW=$(date +"%m%d%Y%H%M")
AccontID=${1}
s3_AccountID=${2}
AWS_DEFAULT_REGION=${3} ## 3rd Argument is the Account Default Region is diff than the CLI server
csvfile=/tmp/cw-${AccontID}-${NOW}.csv
#
## Reset Env variables
reset_env () {
        unset AWS_SESSION_TOKEN
        unset AWS_DEFAULT_REGION
        unset AWS_SECRET_ACCESS_KEY
        unset AWS_ACCESS_KEY_ID
} #end of reset_env
## Set Env function
assume_role () {
AccontID=${1}
source </path_to_source_env_file/filename> ${AccontID}
}
# Function assume_role ends
assume_role ${AccontID}
if [[ ! -z "$3" ]]; then
        AWS_DEFAULT_REGION='us-east-2'
fi
#
## Generate CSV file
python <path_of_the_script>/collect_cw_metrics.py ${AccontID} ${csvfile}
##
## Upload generated CSV file to S3
reset_env
assume_role ${s3_AccountID}
echo ${csvfile}
echo "Uploading data file  to S3...."
aws s3 cp ${csvfile} <Bucket_Name>
reset_env

Main python Script – collect_cw_metrics.py

#!/usr/bin/python
# To Correct indent in the code - autopep8 cw1.py
import sys
import boto3
import logging
import pandas as pd
import datetime
from datetime import datetime
from datetime import timedelta

AccountID = str(sys.argv[1])
csvfile = str(sys.argv[2])
logger = logging.getLogger()
logger.setLevel(logging.INFO)
# define the connection
client = boto3.client('ec2')
ec2 = boto3.resource('ec2')
cw = boto3.client('cloudwatch')


# Function to get instance Name
def get_instance_name(fid):
    ec2instance = ec2.Instance(fid)
    instancename = ''
    for tags in ec2instance.tags:
        if tags["Key"] == 'Name':
            instancename = tags["Value"]
    return instancename


# Function to get instance ID (mandatory for Custom memory Datapoints)
def get_instance_imageID(fid):
    rsp = client.describe_instances(InstanceIds=[fid])
    for resv in rsp['Reservations']:
        v_ImageID = resv['Instances'][0]['ImageId']
    return v_ImageID


# Function to get instance type (mandatory for Custom memory Datapoints)
def get_instance_Instype(fid):
    rsp = client.describe_instances(InstanceIds=[fid])
    for resv in rsp['Reservations']:
        v_InstanceType = resv['Instances'][0]['InstanceType']
    return v_InstanceType


# all running EC2 instances.
filters = [{
    'Name': 'instance-state-name',
    'Values': ['running']
}
]

# filter the instances
instances = ec2.instances.filter(Filters=filters)

# locate all running instances
RunningInstances = [instance.id for instance in instances]
# print(RunningInstances)
dnow = datetime.now()
cwdatapointnewlist = []

for instance in instances:
    ec2_name = get_instance_name(instance.id)
    imageid = get_instance_imageID(instance.id)
    instancetype = get_instance_Instype(instance.id)
    cw_response = cw.get_metric_statistics(
        Namespace='AWS/EC2',
        MetricName='CPUUtilization',
        Dimensions=[
            {
                'Name': 'InstanceId',
                'Value': instance.id
            },
        ],
        StartTime=dnow+timedelta(hours=-1),
        EndTime=dnow,
        Period=300,
        Statistics=['Average', 'Minimum', 'Maximum']
    )

    cw_response_mem = cw.get_metric_statistics(
        Namespace='CWAgent',
        MetricName='mem_used_percent',
        Dimensions=[
            {
                'Name': 'InstanceId',
                'Value': instance.id
            },
            {
                'Name': 'ImageId',
                'Value': imageid
            },
            {
                'Name': 'InstanceType',
                'Value': instancetype
            },
        ],
        StartTime=dnow+timedelta(hours=-1),
        EndTime=dnow,
        Period=300,
        Statistics=['Average', 'Minimum', 'Maximum']
    )

    cwdatapoints = cw_response['Datapoints']
    label_CPU = cw_response['Label']
    for item in cwdatapoints:
        item.update({"Label": label_CPU})

    cwdatapoints_mem = cw_response_mem['Datapoints']
    label_mem = cw_response_mem['Label']
    for item in cwdatapoints_mem:
        item.update({"Label": label_mem})

# Add memory datapoints to CPUUtilization Datapoints
    cwdatapoints.extend(cwdatapoints_mem)

    for cwdatapoint in cwdatapoints:
         timestampStr = cwdatapoint['Timestamp'].strftime(
             "%d-%b-%Y %H:%M:%S.%f")
         cwdatapoint['Timestamp'] = timestampStr
         cwdatapoint.update({'Instance Name': ec2_name})
         cwdatapoint.update({'Instance ID': instance.id})
         cwdatapointnewlist.append(cwdatapoint)

df = pd.DataFrame(cwdatapointnewlist)
df.to_csv(csvfile, header=False, index=False)

Sample Flat file (CSV format) is as shown below.

Advertisement
Categories: AWS/Boto3/Python Tags: , ,